qr895(猫非再生性贫血的诊断和治疗建议)
非再生性贫血或伴有网织红细胞减少症的贫血在猫科动物临床中经常遇到。猫非再生性贫血发生频率高的原因尚不清楚但很可能是因为猫比狗更容易患上贫血,而且猫患有许多导致猫贫血倾向的慢性疾病(见方框).猫非再生性贫血可能会导致多种疾病。对所有病因和治疗的综述超出了本文的范围,读者可以参考本刊的其他综述以获得更多信息(见下文的方框)。导致非再生性贫血的两个主要病理机制是红细胞生成减少或无效以及红细胞(RBC)寿命缩短。
临床相关性:非再生性贫血,或伴有网织红细胞减少症的贫血,是猫科动物的日常诊断。
临床挑战:非再生性贫血的潜在疾病过程是多种多样的。为了正确诊断和治疗潜在原因,可能需要进行专业的诊断评估。
受众:所有照顾猫的兽医都将面临非再生性贫血的诊断和治疗挑战。读者将受益于对非再生性贫血诊断测试和治疗方案的回顾。
证据基础:这篇综述总结了当前可用的文献,这些文献提供了与非再生性贫血相关的诊断和治疗建议。支持本次审查中建议的证据评级较低,主要包括专家意见、案例报告和案例系列,作者的解释/共识基于这些证据。
关键词:贫血;炎症性贫血;慢性病贫血;骨髓疾病;非再生;不可再生的;纯红细胞再生障碍;免疫介导的溶血性贫血;再生障碍性贫血
发病机理
猫的非再生性贫血可能发生在骨髓水平,继发于红细胞生成减少和/或无效,或者是成熟红细胞进入循环后红细胞寿命缩短的后遗症。
红细胞生成减少和无效
由于绝对或相对缺乏促红细胞生成素,或继发于骨髓对促红细胞生成素的反应降低,红细胞生成减少。促红细胞生成素主要由肾脏在内肾皮质和外髓质的管周间质细胞中产生。肾脏缺氧是刺激促红细胞生成素合成的主要驱动因素。促红细胞生成素的产生因肾脏疾病的急性和慢性原因而减少,已知慢性肾病是猫非再生性贫血的常见原因。抗促红细胞生成素中和抗体的生成偶尔会与ESAs的使用有关,但很少会导致猫促红细胞生成素的相对缺乏和非再生性贫血。
无效的红细胞生成可能继发于血红蛋白或红细胞生物合成所必需的营养素(如铁)的绝对缺乏。由于嘌呤和胸苷酸合酶的抑制,维生素B12的缺乏也可导致猫的非再生性贫血,这种抑制会损害成红细胞内的DNA合成并导致成红细胞凋亡。猫的无效红细胞生成也是各种炎症状态下细胞因子异常的结果,通常被称为慢性疾病贫血。
原发性骨髓疾病,包括PRCA、NRIMHA和AA,以及骨髓增生异常,可导致猫的红细胞生成减少和无效。
红细胞寿命缩短
猫红细胞的预期存活期为73天,比狗的100-115天短。在循环中,红细胞必须保持变形能力,以便向组织输送氧气。随着年龄的增长,红细胞积累细胞损伤,触发网状内皮系统(RES)从循环中清除这些衰老的红细胞。
红细胞氧化损伤是导致红细胞衰老的主要机制之一。因为与许多其他物种相比,猫具有更多数量的可氧化巯基,所以猫的红细胞更容易受到氧化损伤,通常表现为Heinz小体形成。与许多其他物种(如人、兔和小鼠)相比,猫的红细胞还具有较低的固有抗氧化能力,这进一步增加了Heinz小体形成的风险。猫红细胞缺乏N-乙酰转移酶2(NAT2),它的缺乏会导致产生活性化合物对氨基苯酚的无效代谢途径,从而导致高铁血红蛋白持续产生。由于脾循环闭合、猫红细胞巯基增加和猫红细胞还原能力降低,临床上健康的非贫血猫可能在少数红细胞上发现小的单一Heinz小体。然而,大多数红细胞上存在Heinz小体、大Heinz小体或每个红细胞有多个Heinz小体,应提醒猫科医师注意潜在的病理。
氧化应激、机械应激、补体诱导的损伤、膜磷脂的重排、与活化的嗜中性粒细胞释放的阳离子蛋白的接触、亨氏小体形成和嗜血性对位都改变了细胞质的粘度,导致变形能力受损,从而使红细胞在早期从循环中清除。同样,遗传性红细胞缺陷,如膜蛋白异常、红细胞酶缺乏、血红蛋白病和渗透脆性增加,会导致红细胞寿命缩短。在某些免疫介导的、传染性的、炎症性的和副肿瘤性的疾病中,RES的过度激活也可以刺激红细胞从循环中的早期清除。一般来说,导致红细胞寿命缩短的疾病会导致猫再生性贫血;然而,这是可变的,也可以看到非再生性贫血(表1)。
诊断
网织红细胞计数
需要网织红细胞计数来区分再生性贫血和非再生性贫血,网织红细胞计数升高表明再生性贫血。猫的网织红细胞增多症的定义范围从>0.045x1012/l到>0.060x1012/l.然而,解释网织红细胞计数比仅仅评估网织红细胞的绝对数量更复杂。一些作者提倡使用四级系统来评估网织红细胞:基于网织红细胞计数>0.2x1012/l、0.06–0.19x1012/l、0.016–0.05x1012/l和<0.015x1012/l,分为强、中、弱再生和非再生。猫产生两种类型的网织红细胞:点状和聚集。聚集的网织红细胞由骨髓释放,然后在循环中成熟为点状网织红细胞。聚集的网织红细胞是那些被认为代表再生反应的细胞。在区分再生性和非再生性贫血时不考虑点状网织红细胞。
可以使用手动和自动技术对猫网织红细胞进行计数。虽然使用自动化技术的网织红细胞计数略高,但从不同的自动化血液分析仪(SysmexXT-2000iV、ADVIA2120、CellDyn和ProCyteDx)获得的结果相似,并且确实与手动聚集网织红细胞计数相关。参考实验室通常根据自动计数报告网织红细胞数量,除非特别要求手动计数,或者存在样本干扰,如自动凝集。由于网织红细胞在体外持续成熟,为了获得准确的计数,应在采集血样后尽快进行网织红细胞计数。
网织红细胞百分比
网织红细胞百分比和校正网织红细胞百分比是用于量化再生的附加参数。这些评估再生的方法通过将这些数字纳入计算考虑了骨髓网织红细胞的产生和外周红细胞计数。校正网织红细胞百分比的公式还考虑了贫血的严重程度。最近的一项研究表明,网织红细胞百分比可以区分再生性和非再生性贫血,并且可以在评估贫血猫时使用。推荐的缺乏再生的临界值是人工计数的网织红细胞百分比<1.70,自动计数的网织红细胞百分比<3.06计数。
品种变化
已经报告了红细胞压积(HCT)、网织红细胞数量和百分比的品种差异,在解释这些测试时必须考虑这些差异(表2)。
鉴别诊断
猫非再生性贫血的鉴别诊断原因很多,虽然有些原因比其他原因更常见(上文〈非再生性贫血〉)。鉴别诊断应根据患者症状、详细病史和临床表现进行。使用算法来指导诊断建议将有助于最大限度地减少不必要的测试,同时最大限度地提高获得诊断的机会(图1)。
图1识别和评估患有非再生性贫血的猫的算法。HCT=hematocrit;PCV=packedcellvolume;CBC=completebloodcount;FeLV=felineleukemiavirus;FIV=felineimmunodeficiencyvirus;PARR=PCRforantigenreceptorrearrangements;IFAT=immunofluorescenceantibodytest.AdaptedfromEttingerSJ,FeldmanECandCoteE.TextbookofVeterinaryInternalMedicine,ExpertConsult,8thed,2017,withpermissionofElsevier
如果最初的血液学、生化和传染病检测和诊断影像学不能确定非再生性贫血的原因、血细胞减少、血涂片上发现的异常血细胞、器官肿大或诊断影像学异常,应提示补充检测,例如血涂片检查(表3)、骨髓细胞学或器官抽吸细胞学(表4)。贫血程度也有助于区分差异的优先级。严重贫血(HCT<14%),特别是在血流动力学稳定的患者中,提示贫血发病缓慢,更常见于原发性骨髓疾病、肿瘤和感染性疾病,包括FIP、FeLV、FIV和与FIV和血病原体共感染。
非再生性贫血的常见原因
传染病
FeLV和FIV是猫非再生性贫血最常见的感染原因。一些传染性疾病具有地理特异性,因此熟悉当地疾病并获得旅行史非常重要。
铁缺乏
缺铁通常与猫的慢性失血有关(胃肠出血、由严重跳蚤感染引起的寄生虫感染,或在慢性血尿病例中的轶事报道)。随着时间的推移,随着骨髓对持续损失的补偿,铁储备被耗尽,导致进行性非再生性贫血。在许多物种中,继发于缺铁的贫血导致小细胞症和低色素血症。
区分缺铁性贫血和炎症性贫血可能是困难的,在某些情况下,两种情况可能并存。在猫中,由于平均细胞体积和平均细胞血红蛋白浓度对小细胞症和色素减退的常规评估是铁缺乏的不敏感标志,因此网织红细胞指数是铁状态的更好指标。网织红细胞血红蛋白含量降低(CHR<0.88fmol)对猫缺铁的敏感性为93.8%,特异性为76.9%;然而,网织红细胞血红蛋白的可用性并不统一。
铁参数的测定可以进一步区分缺铁性贫血和炎症性贫血,尽管这种区分仍然是困难的。两种情况下的血清铁水平都很低。铁蛋白是铁在组织中的可溶性储存形式,它在缺铁性贫血时减少,在炎症性贫血时增加。转铁蛋白是血液中结合和运输铁的主要蛋白质,被间接测量为总铁结合能力(TIBC),在缺铁的情况下,TIBC水平通常正常或升高,尽管并发炎症会降低TIBC并妨碍解释。铁饱和百分比(血清铁/TIBC)<20%可能提示缺铁。虽然铁含量测定可能有助于提供洞察力,但在某些情况下,这些结果可能不会改变治疗建议。
骨髓疾病
多种原发性(髓内)和继发性(髓外)骨髓疾病导致无效的红细胞生成,产生非再生性贫血。这些包括:PRCA、NRIMHA、AA/全血细胞减少症、原发性和继发性MDSs、骨髓纤维化和原发性和继发性骨髓肺结核。虽然骨髓疾病作为一个总的类别是猫非再生性贫血的常见原因,但个体特异性诊断在猫中并不常见。可能需要骨髓抽吸和细胞学和/或骨髓活检来区分这些骨髓疾病。
PRCA、NRIMHA和AA以相似的临床表现呈现给猫科医师:一只严重贫血的猫,没有明显失血,经常需要紧急输血。每一种都可能是特发性/免疫介导的或由潜在原因触发,例如FeLV感染。这三种形式的非再生性贫血通过全血细胞计数(CBC)以及骨髓细胞学和组织病理学结果来区分。PRCA和NRIMHA,但不是AA,可能会在外周血中产生更多的淋巴细胞,在骨髓样本中产生淋巴细胞聚集,并且似乎发生在年轻的猫身上。最近在IMHA和胰腺炎之间建立了关联。
✜PRCA诊断为PRCA的猫的CBC的特征是在没有其他血细胞减少的情况下,出现正常细胞性、非色素性、非再生性贫血。骨髓细胞学和活检显示红细胞前体减少或缺失。
✜NRIMHA被诊断患有NRIMHA的猫的CBC的特征是正常红细胞性或大红细胞性贫血,并且经常是中性粒细胞减少或血小板减少。巨红细胞症是假的,是由于NRIMHA缺乏网织红细胞而引起的凝集,网织红细胞是巨红细胞症的典型原因。除了缺乏网织红细胞外,被诊断患有NRIMHA的猫应至少具有下列一项实验室检查结果:盐水洗涤红细胞后出现持续凝集,直接抗球蛋白试验阳性,或在新鲜血液涂片上出现血影细胞。诊断患有NRIMHA的猫的骨髓细胞学表现为明显的红系增生,伴有低髓系:红系比率。在红细胞生成的某一阶段可能存在成熟停滞(例如,相对于红血细胞,后红血细胞的比例降低)。有时可见红细胞吞噬作用。通常在患有NRIMHA的猫的骨髓中观察到发育异常、纤维化、坏死和炎症迹象,这些异常导致非再生性贫血。
✜AA被诊断为AA的猫的CBC以全血细胞减少症为特征,尽管一些作者将双血细胞减少症添加到定义中。骨髓细胞学和活检显示正常造血组织显著减少或缺乏,其被脂肪取代。
✜骨髓增生异常综合征被诊断为骨髓增生异常综合征的猫的CBC显示双血细胞减少症或全血细胞减少症,这是无效造血的结果。巨红细胞增多症很常见。这些猫的骨髓样本为正常细胞至多细胞,原始细胞计数低于有核细胞的30%。原始细胞可以是成红细胞细胞或成髓细胞。在所有三种细胞系中都可以看到发育异常变化:红细胞、白细胞和血小板。MDS被认为是白血病前期状态,因为通常会出现急性髓系白血病。FeLV感染在患有MDS的猫中很常见。继发性MDS由化疗或放疗引起。
✜继发性骨髓生成障碍被诊断为继发性骨髓生成障碍的猫的CBC表现为非再生性贫血,不伴有巨红细胞症。骨髓样本具有正常至增加的细胞结构,发育异常变化在红细胞系中最为显著。原始细胞数量没有增加。与继发性骨髓生成障碍相关的潜在疾病包括免疫介导的血液学疾病、肾小球肾炎和FIP。继发性骨髓生成障碍在猫中非常罕见。
✜骨髓纤维化来自诊断为骨髓纤维化的罕见病例的CBC和骨髓样本可能反映了潜在的病因,包括MDS、急性髓性白血病、NRIMHA和PRCA;然而,这些变化通常非常严重,以至于无法确定根本原因。骨髓纤维化的确认需要采用特殊染色的组织病理学方法来识别过度的网织蛋白纤维化,而正常猫骨髓中不存在这种情况。
✜骨髓痨异常细胞浸润和替代正常骨髓空间会导致非再生性贫血。在原发性骨髓痨中,浸润细胞起源于骨髓。在继发性骨髓痨中,肿瘤细胞起源于髓腔外的肿瘤。预计诊断为原发性或继发性骨髓痨的猫的CBC相似,但有不同程度的血细胞减少。在极少数情况下,CBC上也可能会出现肿瘤细胞。骨髓细胞学或组织病理学显示肿瘤性造血细胞浸润。
非再生性贫血的罕见原因
非再生性贫血的不常见原因包括肝脂质沉积症、维生素B12缺乏、毒性和某些传染病(见上文方框)。虽然猫比狗更能抵抗药物的许多血液学副作用,但某些药物也可能与猫的非再生性贫血有关(见上文方框)。一些通常被认为是再生性的贫血可以表现为非再生性贫血。在患者的临床环境中适当时应考虑这些差异(表1)。
治疗选择
确定非再生性贫血的根本原因对于制定患者的治疗计划很重要。非再生性贫血的治疗包括支持性治疗,例如通过输血红细胞或使用ESAs增加血液的携氧能力。具体疗法应针对根本原因,并且不在本文的范围内。
支持疗法
输血
红细胞输注可用于快速增加任何病因的非再生性贫血的携氧能力。大约三分之一的猫输血是为了治疗非再生性贫血;这可能反映了猫慢性肾病的高患病率。
所有猫在第一次输血前应进行AB血型鉴定,并在随后的输血中进行交叉匹配。推荐对初次输血的猫进行交叉配血,但对于安全输血可能不是必需的。
促红细胞生成素
在猫中,ESAs通常用于治疗继发于慢性肾病的非再生性贫血,且反应良好。文献中偶尔提到使用ESAs治疗猫非再生性贫血的其他原发性髓质原因,但没有提及关于其效用的明确共识。
据报道,在患有AA、FIV和FIP导致的非再生性贫血的猫中使用ESAs会增加HCT。据报道,患有FIV的猫的病毒载量没有增加。在人类中,ESA已广泛用于临床,并且是MDS继发性贫血最常用的治疗方法,尽管美国食品和药物管理局并未批准该特定用途。在一个病例系列中,2/4的接受ESAs的PRCA猫似乎没有临床益处;然而,对反应或缺乏反应的解释受到阻碍,因为猫也在使用免疫抑制药物,并且没有报告治疗和反应的持续时间。对于患有继发于FeLV的PRCA和某些原发性PRCA的猫,使用esa预计没有益处,因为内源性促红细胞生成素水平已经升高。在使用ESAs之前,PRCA患者需要检测红细胞生成素水平。
市场上有许多重组人ESAs产品,包括epoetinalfa、epoetinbeta和darbepoetinalfa。人促红细胞生成素和猫促红细胞生成素之间的显着同源性(>80%)使重组人产品能够与猫的促红细胞生成素受体结合并相互作用。与依泊汀相比,达贝泊汀是高糖基化的,导致循环半衰期延长三倍,并且平均清除率降低70%以上(ml/kgxh)。这两种产品都可能与继发性PRCA相关,继发性PRCA是一种对治疗产生初始反应后的顽固性贫血,是抗红细胞生成素抗体形成的后遗症。文献支持这可能发生在高达8%的接受达贝泊汀的猫或25-45%的接受依泊汀的猫身上。据报道,停止治疗后,贫血会在数月内消退,同时抗体水平也会降低;但是,在此期间可能需要输血。至少对于依泊汀而言,PRCA的风险似乎随着治疗时间的延长而增加。不再生产的重组猫促红细胞生成素在历史上已经过评估,并且还显示可诱导中和抗体,导致30%的猫出现红细胞再生障碍。应根据多种因素选择使用哪种药剂(见方框)。
除PRCA外,这些药物的其他副作用包括高血压、癫痫发作和缺铁。建议每月同时进行胃肠外补铁(见下文)。特别是对于依泊汀,还可能出现注射部位的局部反应(这可能预示着抗体形成)、发热、关节痛和短暂的皮肤或粘膜皮肤反应等其他不良事件。
特殊疗法
控制失血的靶向治疗
如果怀疑慢性失血是导致贫血的缺铁的原因,则需要治疗来控制出血和防止进一步失血。治疗方案根据基础疾病和出血来源的不同而不同。这些可能包括用于溃疡的胃保护剂、用于跳蚤感染的体外寄生虫控制和环境净化或用于慢性肠道寄生虫的抗寄生虫药。
补铁
接受ESAs治疗或缺铁性贫血的猫需要补充铁。鉴于其更可靠的吸收,肠外补铁是优选的,特别是如果铁缺乏继发于吸收不良。胃肠外补充包括使用右旋糖酐铁、葡萄糖酸铁和蔗糖铁。右旋糖酐铁是兽医学中最常见的选择。猫的推荐剂量为10mg/kg,每3-4周给药一次。为了降低静脉注射右旋糖酐铁时发生过敏反应的风险,建议肌肉注射。注射后,铁通过淋巴系统缓慢吸收,3天内吸收约60%,1-3周后吸收可达90%。
然而,口服补铁是最便宜的补铁方式,也被认为是最安全的。硫酸亚铁是最常见的口服补充剂,据报道剂量各不相同。推荐剂量为50-100mg/猫/天,共8.8-25mg元素铁。副作用通常较轻,但包括胃肠不适。与食物或钙同时服用可能会减少吸收;增加胃pH值的药物也是如此。口服铁会减少氟喹诺酮类和四环素类等抗生素的吸收,建议间隔服用。其他口服铁补充剂包括剂量为16.25mg/kg/天的葡萄糖酸亚铁和剂量为2–4mg/kg/天的富马酸亚铁。
补充维生素B12
低钴胺血症导致的贫血需要补充维生素B12。与铁剂一样,如果低钴胺血症继发于吸收不良,则首选肠外给药。在患有炎症性肠病的猫中,血清钴胺素的半衰期从12.75天缩短到5天,因此建议至少在开始时每周给药一次。
对于肠胃外补充,维生素B12以氰钴胺素的形式给药。给药方案各不相同,最近的建议是每周一次服用250μgSC,持续6周,30天后再服用一次;最后一次注射后30天,重新评估血清钴胺素。数据支持每周注射增加血清钴胺素水平至正常水平。然而,最近的一份出版物表明,在完成每周一次250μgSC的6周疗程后,95%患有低钴胺血症和肠病的猫在方案完成后4周经历了血清钴胺素水平的显著下降,到10周时,55%的猫再次具有低于参考区间的水平。根据最近的数据,在首次每周给药后,可能需要长期间歇性胃肠外补充以维持血清钴胺素水平在参考区间内。需要额外的研究来确定合适的用药方案。有趣的是,对于氰钴胺素不能成功提高血清钴胺素水平的猫,羟钴胺素可以以相同的剂量和频率使用。
数据支持在低钴胺血症的猫中口服补充氰钴胺素也可以达到高于正常的血清钴胺素水平。推荐剂量为250μgPOq24h,连续补充。尚未在猫中评估口服氰钴胺素的减量方案。与肠胃外给药相比,口服补充剂的功效尚未确定。
非再生性贫血原发髓质病因的免疫抑制治疗
由于单一病例报告和病例系列在文献中占主导地位,猫医学中缺乏对原发性延髓病的循证治疗。原发性骨髓疾病存在多种分类方案,使得治疗结果的比较变得困难。
非再生性贫血中使用的免疫抑制剂剂量见表5。
✜糖皮质激素由于糖皮质激素具有抗炎、免疫抑制作用,并且在淋巴恶性肿瘤中具有抗肿瘤作用,几乎所有患有原发性髓质疾病的猫都接受糖皮质激素治疗。很大比例的PRCA和NRIMHA病例对糖皮质激素单药治疗有反应。在其他骨髓疾病中,反应变化更大。
✜环孢素研究最充分和广泛使用的糖皮质激素佐剂或替代品是环孢素,该药物已用于患有NRIMHA、PRCA和MDS的猫。环孢素可用于静脉内和口服给药。猫使用环孢素的报道包括猫口服微乳溶液以及人口服溶液、油包环孢素和通用产品。Pluronic卵磷脂有机凝胶中的复合透皮环孢素吸收不一致,不推荐用于猫。以标签剂量给药的猫科环孢素口服微乳溶液7天达到稳态;然而,PRCA病例达到临床缓解所需的剂量往往高于标示剂量,达到临床缓解需要2-7周。环孢素的最佳血液水平尚不清楚,但在一组患有PRCA的猫中,96-368ng/ml的全血最低水平与临床缓解有关。
胃肠道症状是与环孢素给药相关的最常见不良反应之一。这些包括呕吐、唾液分泌过多、腹泻、体重减轻、反流和嗜睡。对食欲的影响是多变的,有报道增加和减少,厌食症很少发生。继发感染,包括弓形虫病和沙门氏菌病已有报道。较不常见的不良反应包括静脉输注环孢素期间的过敏反应和肝毒性。据报道,长期服用环孢素的猫会发生恶性肿瘤,最常见的是淋巴瘤。肾移植后接受慢性环孢素治疗的猫患恶性肿瘤和淋巴瘤的风险高出六倍。
✜苯丁酸氮芥少数患有NRIMHA的猫对苯丁酸氮芥辅助糖皮质激素治疗有反应。苯丁酸氮芥的副作用包括骨髓抑制、肝病、范可尼综合征和肌阵挛。复方苯丁酸氮芥混悬液的稳定性有限(5℃下7天),不适合常规使用。
✜霉酚酸酯已描述了用霉酚酸酯复合口服混悬液成功治疗两只患有再生IMHA的猫,因此霉酚酸酯可考虑用于治疗NRIMHA、PRCA或AA。尽管药代动力学研究显示猫体内霉酚酸酯生物转化为其活性代谢物,但血液水平是可变的和不可预测的,并且在没有药物监测的情况下,存在过量或不足给药的风险。胃肠道副作用与剂量有关,似乎具有自限性。
✜硫唑嘌呤不建议在猫患者中使用硫唑嘌呤,安全剂量尚未确定。与狗或人相比,猫的红细胞硫嘌呤甲基转移酶(硫唑嘌呤代谢中的重要酶)活性较低。低水平的硫嘌呤甲基转移酶与人类不良反应增加有关,并可能在使用硫唑嘌呤治疗的猫中报告的严重中性粒细胞减少症中发挥作用。
✜阿糖胞苷(阿糖胞嘧啶)虽然阿糖胞甙是一种最常用于猫肾淋巴瘤的化疗药物,但已用于治疗猫MDS和骨髓纤维化。治疗这些骨髓疾病的剂量较低,每天通过皮下注射给药。尚未报告该给药方案的副作用。
✜维生素K2仅以摘要形式提供的数据表明,维生素K2类似物(甲萘醌)以2mg/kg的剂量对猫MDS有益,但尚未确定猫的最佳剂量。促进体外细胞分化。
治疗的新方向
使用铁和ESA治疗非再生性炎症性贫血对某些患者无效,并且存在风险,这促使人们寻找刺激红细胞生成的新疗法。许多这些疗法针对铁调素-铁转运蛋白轴。直接拮抗剂抑制铁调素功能。铁调素产生抑制剂(包括IL-6通路抑制剂和维生素D)可防止铁调素转录。转运蛋白激动剂和稳定剂促进转运蛋白对铁调素作用的抗性。脯氨酰羟化酶抑制剂降低铁调素水平并稳定缺氧诱导因子以促进内源性红细胞生成素的产生。其他目标包括促红细胞生成素基因治疗。
转运蛋白激动剂和稳定剂促进转运蛋白对铁调素作用的抗性。脯氨酰羟化酶抑制剂降低铁调素水平并稳定缺氧诱导因子以促进内源性红细胞生成素的产生。其他目标包括促红细胞生成素基因治疗。
这些类别中的许多不同药物正处于商业开发和用于人体的临床试验中。随着它们的疗效和安全性的确立,这些新型药物也可能会被考虑用于猫科动物患者,以扩大我们对这些具有挑战性病例的长期管理的选择。
利益冲突
作者声明与本文的研究、作者身份和/或出版没有潜在的利益冲突。
资金
作者没有为本文的研究、作者身份和/或出版获得任何经济支持。
参考文献
1 Lynch AM, Respess M, Boll AE, et al. Hospital-acquired anemia in critically ill dogs and cats: a multi-institutional study. J Vet Intern Med 2016; 30: 141–146.
2 Balakrishnan A, Drobatz KJ and Reineke EL. Development of anemia, phlebotomy practices, and blood transfusion requirements in 45 critically ill cats (2009–2011). J Vet Emerg Crit Care 2016; 26: 406–411.
3 Peterson ME, Hurvitz AI, Leib MS, et al. Propylthiouracil- associated hemolytic anemia, thrombocytopenia, and anti- nuclear antibodies in cats with hyperthyroidism. J Am Vet Med Assoc 1984; 184: 806–808.
4 Weiss DJ. Aplastic anemia in cats – clinicopathological fea- tures and associated disease conditions 1996–2004. J Feline Med Surg 2006; 8: 203–206.
5 Black V, Adamantos S, Barfield D, et al. Feline non-regenera- tive immune-mediated anaemia: features and outcome in 15 cases. J Feline Med Surg 2016; 18: 597–602.
6 Stokol T, Randolph JF, Nachbar S, et al. Development of bone marrow toxicosis after albendazole administration in a dog and cat. J Am Vet Med Assoc 1997; 210: 1753–1756.
7 Cowgill LD, James KM, Levy JK, et al. Use of recombinant human erythropoietin for management of anemia in dogs and cats with renal failure. J Am Vet Med Assoc 1998; 212: 521–528.
8 Chalhoub S, Langston CE and Farrelly J. The use of darbepoetin to stimulate erythropoiesis in anemia of chronic kidney disease in cats: 25 cases. J Vet Intern Med 2012; 26: 363–369.
9 Plumb DC. Veterinary drug handbook. 8th ed. Stockholm, PharmaVet, 2015. Accessed via http://www.vin.com on December 6, 2017.
10 Boothe DM. Phenicols. Merck veterinary manual. http://www.merckvetmanual.com/pharmacology/antibac- terial-agents/phenicols (2017, accessed December 6, 2017).
11 Center SA, Crawford MA, Guida L, et al. A retrospective study of 77 cats with severe hepatic lipidosis: 1975–1990. J Vet Intern Med 1993; 7: 349–359.
12 Vaden SL, Wood PA, Ledley FD, et al. Cobalamin deficiency associated with methylmalonic acidemia in a cat. J Am Vet Med Assoc 1992; 200: 1101–1103.
13 Koury MJ and Ponka P. New insights into erythropoiesis: the roles of folate, vitamin B12, and iron. Annu Rev Nutr 2004; 24: 105–131.
14 Stanley EL and Eatroff AE. Hypocobalaminaemia as a cause of bone marrow failure and pancytopenia in a cat. Aust Vet J 2017; 95: 156–160.
15 Gleich S and Hartmann K. Hematology and serum biochem- istry of feline immunodeficiency virus-infected and feline leukemia virus-infected cats. J Vet Intern Med 2009; 23: 552–558.
16 Shelton GH, Linenberger ML, Grant CK, et al. Hematologic manifestations of feline immunodeficiency virus infection. Blood 1990; 76: 1104–1191.
17 Paltrinieri S, Grieco V, Comazzi S, et al. Laboratory profiles in cats with different pathological and immunohistochemical findings due to feline infectious peritonitis (FIP). J Feline Med Surg 2001; 3: 149–159.
18 MacNeill AL, Barger AM, Skowronski MC, et al. Identification of Cytauxzoon felis infection in domestic cats from southern Illinois. J Feline Med Surg 2015; 17: 1069–1072.
19 Carli E, Trotta M, Bianchi E, et al. Cytauxzoon sp. infection in two free ranging young cats: clinicopathological findings, therapy and follow up. Turkiye Parazitol Derg 2014; 38: 185–189.
20 Weingart C, Tasker S and Kohn B. Infection with haemoplas- ma species in 22 cats with anaemia. J Feline Med Surg 2016; 18: 129–136.
21 Marcos R, Santos M, Malhão F, et al. Pancytopenia in a cat with visceral leishmaniasis. Vet Clin Pathol 2009; 38: 201–205. 22 Pennisi MG, Cardoso L, Baneth G, et al. LeishVet update and recommendations on feline leishmaniosis. Parasit Vectors 2015; 8: 302. DOI: 10.1186/s13071-015-0909-z.
23 Breitschwerdt EB, Abrams-Ogg AC, Lappin MR, et al. Molecular evidence supporting Ehrlichia canis-like infec- tion in cats. J Vet Intern Med 2002; 16: 642–649.
24 Braga IA, dos Santos LG, Melo AL, et al. Hematological val- ues associated to the serological and molecular diagnostic in cats suspected of Ehrlichia canis infection. Rev Bras Parasitol Vet 2013; 22: 470–474.
25 Jordan HL, Cohn and Armstrong PJ. Disseminated Mycobacterium avium complex infection in three Siamese cats. J Am Vet Med Assoc 1994; 204: 90–93.
26 Hughes MS, Ball NW, Love DN, et al. Disseminated Mycobacterium genavense infection in a FIV-positive cat. J Feline Med Surg 1999; 1: 23–29.
27 Maxwell PH, Ferguson DJ, Nicholls LG, et al. Sites of erythro- poietin production. Kidney Int 1997; 51: 393–401.
28 Dibartola SP, Rutgers HC, Zack PM, et al. Clinicopathologic findings associated with chronic renal disease in cats: 74 cases (1973–1984). J Am Vet Med Assoc 1987; 190: 1196–1202. 29 Furman E, Leidinger E, Hooijberg, EJ, et al. A retrospective study of 1098 blood samples with anemia from adult cats: frequency, classification and association with serum creati-nine concentration. J Vet Intern Med 2014; 28: 1391–1397.
30 Randolph JE, Scarlett JM, Stokol T, et al. Expression, bioactiv- ity, and clinical assessment of recombinant feline erythro-poietin. Am J Vet Res 2004; 65: 1355–1366.
31 Smith JE. Erythrocytes. Adv Vet Sci Comp Med 1991; 36: 9–55. 32 Christopher MM, White JG and Eaton JW. Erythrocyte pathology and mechanisms of Heinz body-mediated hemol- ysis in cats. Vet Pathol 1990; 27: 299–310.
33 Trepanier LA, Cribb AE, Spielberg SP, et al. Deficiency of cytosolic arylamine N-acetylation in the domestic cat and wild felids caused by the presence of a single NAT1-like gene. Pharmacogenetics 1998; 8: 169–179.
34 Court MH. Feline drug metabolism and disposition: pharma- cokinetic evidence for species differences and molecular mech- anisms. Vet Clin North Am Small Anim Pract 2013; 43: 139–154.
35 McConkey SE, Grant DM and Cribb AE. The role of para- aminophenol in acetaminophen-induced methemoglobine- mia in dogs and cats. J Vet Pharmacol Ther 2009; 32: 585–595.
36 Christopher MM. Relation of endogenous Heinz bodies to disease and anemia in cats: 120 cases (1978–1987). J Am Vet Med Assoc 1989; 194: 1089–1095.
37 Stockham SL and Scott MA. Erythrocytes. In: Stockham SL and Scott MA (eds). Fundamentals of veterinary clinical pathology. 2nd ed. Ames, Iowa: Blackwell Publishing 2008, pp 141–187.
38 Stuart J and Nash GB. Red cell deformability and haemato- logical disorders. Blood Rev 1990; 4: 141–147.
39 Clavero S, Bishop DF, Haskins ME, et al. Feline acute inter- mittent porphyria: a phenocopy masquerading as an ery- thropoietic porphyria due to dominant and recessive hydroxymethylbilane synthase mutations. Hum Mol Genet 2010; 19: 584–596.
40 Schnier JJ and Hanna P. Feline porphyria associated with anemia, severe hepatic disease, and renal calculi. Can Vet J 2010; 51: 1146–1151.
41 Tritschler C, Mizukami K, Raj K, et al. Increased erythrocytic osmotic fragility in anemic domestic shorthair and pure- bred cats. J Feline Med Surg 2016; 18: 462–470.
42 Kohn B and Fumi C. Clinical course of pyruvate kinase defi- ciency in Abyssinian and Somali cats. J Feline Med Surg 2008; 10: 145–153.
43 Grahn RA, Grahn JC, Penedo MCT, et al. Erythrocyte pyru- vate kinase deficiency mutation identified in multiple breeds of domestic cats. BMC Vet Research 2012; 8: 207. DOI: 10.1186/1746-6148-8-207.
44 Kohn B, Weingart C, Eckmann V, et al. Primary immune- mediated hemolytic anemia in 19 cats: diagnosis, therapy and outcome (1998–2004). J Vet Intern Med 2006; 20: 159–166.
45 Fielder SE. Hematology reference ranges. Merck veterinary manual. http://www.merckvetmanual.com/appendixes/ reference-guides/hematologic-reference-ranges (2017, accessed November 19, 2017).
46 IDEXX. Reticulocyte panel. Idexx laboratory test directory. https://www.idexx.com/small-animal-health/directory- tests-services.html (accessed November 25, 2017).
47 Antech Diagnostics. Reticulocyte count. https:// http://online.antechdiagnostics.com/#/results/labresults (accessed November 29, 2017).
48 Korman RM, Hetzel N, Knowles TG, et al. A retrospective study of 180 anaemic cats: features, aetiologies and survival data. J Feline Med Surg 2013; 15: 81–90.
49 Bauer N, Nakagawa J, Dunker C, et al. Evaluation of the automated hematology analyzer Sysmex XT-2000iV compared to the ADVIA 2120 for its use in dogs, cats, and horses. Part II: Accuracy of leukocyte differential and retic- ulocyte count, impact of anticoagulant and sample aging. J Vet Diagn Invest 2012; 24: 74–89.
50 Fujino Y, Nakamura Y, Matsumoto H, et al. Development and evaluation of a novel in-clinic automated hematology ana- lyzer, ProCyte Dx, for canine erythrocyte indices, leuko- gram, platelet counts and reticulocyte counts. J Vet Med Sci 2013; 75: 1519–1524.
51 Weissenbacher S, Riond B, Hofmann-Lehmann R, et al. Evaluation of a novel haematology analyser for use with feline blood. Vet J 2011; 187: 381–387.
52 Paltrinieri S, Fossati M and Menaballi V. Diagnostic perfor- mances of manual and automated reticulocyte parameters in anaemic cats. J Feline Med Surg 2018; 20: 122–127.
53 Paltrinieri S, Ibba F and Rossi G. Haematological and bio- chemical reference intervals of four feline breeds. J Feline Med Surg 2014; 16: 125–136.
54 Spada E, Antognoni MT, Proverbio D, et al. Haematological and biochemical reference intervals in adult Maine Coon cat blood donors. J Feline Med Surg 2015; 17: 1020–1027.
55 Madewell BR, Gunn C and Gribble DH. Mast cell phagocyto- sis of red blood cells in a cat. Vet Pathol 1983; 20: 638–640.
56 Tachikawa S and Tachikawa T. Hemophagocytic mastocy- toma with multiple cutaneous tumors in a cat. Jpn J Vet Derm 2009; 25: 75–78.
57 Harvey JW. The feline blood film: 2. leukocyte and platelet morphology. J Feline Med Surg 2017; 19: 747–757.
58 Darbès J, Majzoub M, Breuer W, et al. Large granular lym- phocyte leukemia/lymphoma in six cats. Vet Pathol 1998; 35: 370–379.
59 Patel RT, Caceres A, French AF, et al. Multiple myeloma in 16 cats: a retrospective study. Vet Clin Pathol 2005; 34: 341–352.
60 Christopher MM and Lee SE. Red cell morphologic alter- ations in cats with hepatic disease. Vet Clin Pathol 1994; 23:7–12.
61 O’Keefe DA and Schaeffer DJ. Hematologic toxicosis associ-ated with doxorubicin administration in cats. J Vet Intern Med 1992; 6: 276–282.
62 Walton RM, Modiano JF, Thrall MA, et al. Bone marrow cyto- logical findings in 4 dogs and a cat with hemophagocytic syndrome. J Vet Intern Med 1996; 10: 7–14.
63 Mylonakis ME, Soubasis N, Kritsepi-Konstantinou M, et al. Presumptive histiocytic neoplasm with unusual immuno- phenotype in a cat. Comp Clin Pathol 2012, 21: 231–236.
64 Harvey JW. The feline blood film: 1. Leukocyte and platelet morphology. J Feline Med Surg 2017; 19: 529–540.
65 Robertson JE, Christopher MM and Rogers QR. Heinz body formation in cats fed baby food containing onion powder. J Am Vet Med Assoc 1998; 212: 1260–1266.
66 Andress JL, Day TK and Day D. The effects of consecutive day propofol anesthesia on feline red blood cells. Vet Surg 1995; 24: 277–282.
67 Matthews NS, Brown RM, Barling KS, et al. Repetitive propo- fol administration in dogs and cats. J Am Anim Hosp Assoc 2004; 40: 255–260.
68 Christopher MM, Perman V and Eaton JW. Contribution of propylene glycol-induced Heinz body formation to anemia in cats. J Am Vet Med Assoc 1989; 194: 1045–1056.
69 Adams LG, Hardy RM, Weiss DJ, et al. Hypophosphatemia and hemolytic anemia associated with diabetes mellitus and hepatic lipidosis in cats. J Vet Intern Med 1993; 7: 266–271.
70 Court EA, Earnest-Koons KA, Barr SC, et al. Malignant his- tiocytosis in a cat. J Am Vet Med Assoc 1993; 203: 1300–1302. 71 Walton RM, Brown DE, Burkhard MJ, et al. Malignant his- tiocytosis in a domestic cat: cytomorphologic and immuno- histochemical features. Vet Clin Pathol 1997; 26: 56–60.
72 Webb J, Chary P, Northrup N, et al. Erythrophagocytic multi- ple myeloma in a cat. Vet Clin Pathol 2008; 37: 302–307.
73 Dunbar MD and Lyles S. Hemophagocytic syndrome in a cat with multiple myeloma. Vet Clin Pathol 2013; 42: 55–60.
74 Carter JE, Tarigo JL, Vernau W, et al. Erythrophagocytic low- grade extranodal T-cell lymphoma in a cat. Vet Clin Pathol 2008; 37: 416–421.
75 Jain NC. Classification of myeloproliferative disorders in cats using criteria proposed by the animal leukaemia study group: a retrospective study of 181 cases (1969–1992). Comp Haematol Int 1993; 3: 125–134.
76 Fry MM and Kirk CA. Reticulocyte indices in a canine model of nutritional iron deficiency. Vet Clin Pathol 2006; 35: 172–181.
77 Prins M, van Leeuwen MW and Teske E. Stability and reproducibility of ADVIA 120-measured red blood cell and platelet parameters in dogs, cats, and horses, and the use of reticulocyte haemoglobin content (CH(R)) in the diagnosis of iron deficiency. Tijdschr Diergeneeskd 2009; 134: 272–278.
78 Bohn AA. Diagnosis of disorders of iron metabolism in dogs and cats. Vet Clin North Am Small Anim Pract 2013: 43: 1319–1330.
79 Weiss DJ. Differentiating benign and malignant causes of lymphocytosis in feline bone marrow. J Vet Intern Med 2005; 19: 855–859.
80 Viviano KR and Webb JL. Clinical use of cyclosporine as an adjunctive therapy in the management of feline idio- pathic pure red cell aplasia. J Feline Med Surg 2011; 13: 885–895.
81 Swann JW, Szladovits B and Glanemann B. Demographic characteristics, survival and prognostic factors for mortality in cats with primary immune-mediated hemolytic anemia. J Vet Intern Med 2016; 30: 147–156.
82 Zoia A and Drigo M. Association between pancreatitis and immune-mediated haemolytic anaemia in cats: a cross sec- tional study. J Comp Pathol 2017; 156: 384–388.
83 Weiss DJ. Bone marrow pathology in dogs and cats with non-regenerative immune-mediated haemolytic anaemia and pure red cell aplasia. J Comp Pathol 2008; 138: 46–53.
84 Hisasue M, Okayama H, Okayama T, et al. Hematologic abnormalities and outcome of 16 cats with myelodysplastic syndromes. J Vet Intern Med 2000; 15: 471–477.
85 Shimoda T, Shiranaga N, Mashita T, et al. Chronic myelomonocytic leukemia in a cat. J Vet Med Sci 2000; 62: 195–197.
86 Weiss DJ. Evaluation of dysmyelopoiesis in cats: 34 cases (1996–2005). J Am Vet Med Assoc 2006; 228: 893–897.
87 Jain NC, Blue JT, Grindem CB, et al. Proposed criteria for classification of acute myeloid leukemia in dogs and cats. Vet Clin Pathol 1991; 20: 63–82.
88 Blue JT. Myelofibrosis in cats with myelodysplastic syndrome and acute myelogenous leukemia. Vet Pathol 1988; 25: 154–160.
89 Weiss DJ. Feline myelonecrosis and myelofibrosis: 22 cases 1996–2006. Comp Clin Pathol 2007; 16: 181–185.
90 Castellanos I, Couto CG and Gray TL. Clinical use of blood products in cats: a retrospective study (1997–2000). J Vet Intern Med 2004; 18: 529–532.
91 Klaser DA, Reine NJ and Hohenhaus AE. Red blood cell transfusions in cats: 126 cases (1999). J Am Vet Med Assoc 2005; 226: 920–923.
92 Barfield D and Adamantos S. Feline blood transfusions: a pinker shade of pale. J Feline Med Surg 2011; 13: 11–23.
93 Weltman JG, Fletcher DJ and Rogers C. Influence of cross- match on posttransfusion packed cell volume in feline packed red blood cell transfusion. J Vet Emerg Crit Care 2014; 24: 429–436.
94 Sylvane B, Prittie J, Hohenhaus AE, et al. Effect of cross- match on packed cell volume after transfusion of packed red blood cells in transfusion-naïve anemic cats. J Vet Intern Med 2018; 32: 1077–1083.
95 Chalhoub S, Langston C and Eatroff A. Anemia of renal dis- ease: what it is, what to do and what’s new. J Feline Med Surg 2011; 13: 629–640.
96 Arai M, Darman J, Lewis A, et al. The use of human hematopoietic growth factors (rhGM-CSF and rhEPO) as a supportive therapy for FIV-infected cats. Vet Immunol Immunopathol 2000; 77: 71–92.
97 Tanaka Y, Sato Y, Takahashi D, et al. Treatment of a case of feline infectious peritonitis with cyclosporin A. Vet Rec Case Rep 2015; 3: 41. DOI: 10.1136/vetreccr-2014- 000134.
98 Casadevall N, Durieux P, Dubois S, et al. Health, economic, and quality-of-life effects of erythropoietin and granulocyte colony-stimulating factor for the treatment of myelodys- plastic syndromes: a randomized, controlled trial. Blood 2004; 104: 321–327.
99 Stokol T and Blue JT. Pure red cell aplasia in cats: 9 cases (1989–1997). J Am Vet Med Assoc 1999; 214: 75–79.
100 Kociba GJ, Lange RD, Dunn CD, et al. Serum erythropoietin changes in cats with feline leukemia virus-induced ery- throid aplasia. Vet Pathol 1983; 20: 548–552.
101MacLeod JN, Tetreault JW, Lorschy KAS, et al. Expression and bioactivity of recombinant canine erythropoietin. Am J Vet Res 1998; 59: 1144–1148.
102MacLeod JN. Species-specific recombinant erythropoietin preparations for companion animals. Proceedings of 2001 ACVIM Veterinary Medical Forum; May 23–26, 2001; Denver, CO, pp 578–579.
103 Macdougall IC. Darbepoetin alfa: a new therapeutic agent for renal anemia. Kidney Int Suppl 2002; May: 55–61.
104Langston CE. Clinical use of erythropoietin in feline medicine. In: August JR (ed). Consultations in feline internal medicine. 6th ed. St Louis, MO: Elsevier, 2010, pp 684–693.
105 Simpson KW, Fyfe J, Cornetta A, et al. Subnormal concentra- tions of serum cobalamin (vitamin B12) in cats with gas- trointestinal disease. J Vet Intern Med 2001; 15: 26–32.
106Steiner JM. Cobalamin: diagnostic use and therapeutic considerations. http://vetmed.tamu.edu/gilab/research/ cobalamin-information#-dosing (accessed December 12, 2017).
107 Kempf J, Hersberger M, Melliger RH, et al. Effects of 6 weeks of parenteral cobalamin supplementation on clinical and biochemical variables in cats with gastrointestinal disease. J Vet Intern Med 2017; 31: 1664–1672.
108 Kuehn N. North American companion animal formulary. 11th ed. Port Huron, Michigan, North American Compendiums. http://www.vin.com (2015, accessed December 6, 2017).
109Toresson L, Steiner JM, Olmedal G, et al. Oral cobalamin supplementation in cats with hypocobalaminaemia: a retro- spective study. J Feline Med Surg 2017; 19: 1302–1306.
110 Bacek LM and Macintire DK. Treatment of primary immune- mediated hemolytic anemia with mycophenolate mofetil in two cats. J Vet Emerg Crit Care 2011; 21: 45–49.
111 Slovak JE and Villarino NF. Safety of oral and intravenous mycophenolate mofetil in healthy cats. J Feline Med Surg 2017; 31: 1827–1832.
112 Iwanaga T, Miura N, Miyoshi N, et al. Abnormal erythroid cell proliferation and myelofibrosis in a cat. J Vet Med Sci 2012; 74: 909–912.
113 Miller R, Schick AE, Boothe DM, et al. Absorption of trans- dermal and oral cyclosporine in six healthy cats. J Am Anim Hosp Assoc 2014; 50: 36–41.
114 Roberts ES, Vanlare KA, Strehlau G, et al. Safety, tolerability, and pharmacokinetics of 6-month daily dosing of an oral formulation of cyclosporine (Atopica for cats) in cats. J Vet Pharmacol Therap 2014; 37: 161–168.
115 Roberts ES, VanLare KA, Roycroft LM, et al. Effect of high- dose ciclosporin on the immune response to primary and booster vaccination in immunocompetent cats. J Feline Med Surg 2015; 17: 101–109.
116Roberts ES, Speranza C, Friberg C, et al. Confirmatory field study for the evaluation of ciclosporin at a target dose of 7.0 mg/kg (3.2 mg/lb) in the control of feline hypersensi- tivity dermatitis. J Feline Med Surg 2016; 18: 889–897.
117 Heinrich NA, McKeever PJ and Eisenschenk MC. Adverse events in 50 cats with allergic dermatitis receiving ciclosporin. Vet Dermatol 2011; 22: 511–520.
118 Barrs VR, Martin P and Beatty JA. Antemortem diagnosis and treatment of toxoplasmosis in two cats on cyclosporin therapy. Aust Vet J 2006; 84: 30–35.
119 Callegari C, Palermo G, Greco MF, et al. Pneumonia associat- ed with Salmonella spp. infection in a cat receiving cyclosporine. Schweiz Arch Tierheilkd 2014; 156: 499–503.
120 Lappin MR, vanLare KA, Seewald W, et al. Effect of oral administration of cyclosporine on Toxoplasma gondii infec- tions status of cats. Am J Vet Res 2015; 76: 351–357.
121 Schmiedt CW, Grimes JA, Holzman G, et al. Incidence and risk factors for development of malignant neoplasia after feline renal transplantation and cyclosporine-based immunosuppression. Vet Comp Oncol 2009; 7: 45–53.
122 Wormser C, Mariano A, Holmes ES, et al. Post-transplant malignant neoplasia associated with cyclosporine-based immunotherapy: prevalence, risk factors and survival in feline renal transplant recipients. Vet Comp Oncol 2016; 14: e126–e134. DOI: 10.1111/vco.12120.
123 Benitah N, de Lorimier LP and Gaspar M. Chlorambucil- induced myoclonus in a cat with lymphoma. J Am Anim Hosp Assoc 2003; 39: 283–287.
124Pope KV, Tun A, McNeill C, et al. Outcome and toxicity assessment of feline small cell lymphoma: 56 cases (2000–2010). Vet Med Sci 2015; 1: 51–62.
125 Reinert NC and Feldman DG. Acquired Fanconi syndrome in four cats treated with chlorambucil. J Feline Med Surg 2016; 18: 1034–1040.
126Dressman JB and Poust RI. Stability of allopurinol and of five antineoplastics in suspension. Am J Hosp Pharm 1983; 40: 616–618.
127Slovak JE, Rivera SM, Hwang JK, et al. Pharmacokinetics of mycophenolic acid after intravenous administration of mycophenolate mofetil to healthy cats. J Vet Intern Med 2017; 31: 1827–1832.
128 Beale KM, Altman D, Clemmons RR, et al. Systemic toxicosis associated with azathioprine administration in domestic cats. Am J Vet Res 1992; 53: 1236–1240.
129 Foster AP, Shaw SE, Duley JA, et al. Demonstration of thio- purine methyltransferase activity in the erythrocytes of cats. J Vet Intern Med 2000; 14: 552–554.
130 Hisasue M, Neo S, Tuchiya R, et al. Successful therapy with a vitamin K2 analog (menatetrenone) in feline myelodysplastic syndromes [abstract]. J Vet Intern Med 2004; 18: 440.
131 Macdougall IC. New anemia therapies: translating novel strategies from bench to bedside. Am J Kidney Dis 2012; 59: 444–451.
132 Sun CC, Vaja V, Babitt JL, et al. Targeting the hepcidin– ferroportin axis to develop new treatment strategies for anemia of chronic disease and anemia of inflammation. Am J Hematol 2012; 87: 392–400.
133 Crielaard BJ, Lammers T and Rivella S. Targeting iron metabolism in drug discovery and delivery. Nat Rev Drug Discov 2017; 16: 400–423.
134 Sankaran VG and Weiss MJ. Anemia: progress in molecular mechanisms and therapies. Nat Med 2015; 21: 221–230.
0 留言